28 research outputs found

    A Faster Algorithm for Calculating Hypervolume

    Get PDF
    We present an algorithm for calculating hypervolume exactly, the Hypervolume by Slicing Objectives (HSO) algorithm, that is faster than any that has previously been published. HSO processes objectives instead of points, an idea that has been considered before but that has never been properly evaluated in the literature. We show that both previously studied exact hypervolume algorithms are exponential in at least the number of objectives and that although HSO is also exponential in the number of objectives in the worst case, it runs in significantly less time, i.e., two to three orders of magnitude less for randomly generated and benchmark data in three to eight objectives. Thus, HSO increases the utility of hypervolume, both as a metric for general optimization algorithms and as a diversity mechanism for evolutionary algorithm

    Designing Comminution Circuits with a Multi-Objective Evolutionary Algorithm

    Get PDF
    Mining is an important industry in Australia, contributing billions of dollars to the economy. The performance of a processing plant has a large impact on the profitability of a mining operation, yet plant design decisions are typically guided more by intuition and experience than by analysis. In this paper, we motivate the use of an evolutionary algorithm to aid in the design of such plants. We formalise plant design in terms suitable for application in a multi-objective evolutionary algorithm and create a simulation to assess the performance of candidate solutions. Results show the effectiveness of this approach with our algorithm producing designs superior to those used in practice today, promising significant financial benefits

    Improving return on investment in higher education retention: leveraging data analytics insights

    Get PDF

    A Small Community Model for the Transmission of Infectious Diseases: Comparison of School Closure as an Intervention in Individual-Based Models of an Influenza Pandemic

    Get PDF
    BACKGROUND: In the absence of other evidence, modelling has been used extensively to help policy makers plan for a potential future influenza pandemic. METHOD: We have constructed an individual based model of a small community in the developed world with detail down to exact household structure obtained from census collection datasets and precise simulation of household demographics, movement within the community and individual contact patterns. We modelled the spread of pandemic influenza in this community and the effect on daily and final attack rates of four social distancing measures: school closure, increased case isolation, workplace non-attendance and community contact reduction. We compared the modelled results of final attack rates in the absence of any interventions and the effect of school closure as a single intervention with other published individual based models of pandemic influenza in the developed world. RESULTS: We showed that published individual based models estimate similar final attack rates over a range of values for R(0) in a pandemic where no interventions have been implemented; that multiple social distancing measures applied early and continuously can be very effective in interrupting transmission of the pandemic virus for R(0) values up to 2.5; and that different conclusions reached on the simulated benefit of school closure in published models appear to result from differences in assumptions about the timing and duration of school closure and flow-on effects on other social contacts resulting from school closure. CONCLUSION: Models of the spread and control of pandemic influenza have the potential to assist policy makers with decisions about which control strategies to adopt. However, attention needs to be given by policy makers to the assumptions underpinning both the models and the control strategies examined

    Study progression, success and program component selection

    Get PDF

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    The physician's unique role in preventing violence: a neglected opportunity?

    Full text link

    Return on investment in higher education retention: Systematic focus on actionable information from data analytics

    Full text link
    This article describes the human and technical infrastructure analytics capabilities that have evolved at a university in Western Australia, which have been applied to curriculum and learning data with a focus on the return on investment (ROI) of improving retention. The ROI approach has been used to highlight the benefits of further inquiry and action by decision-makers from the classroom level to school and faculty levels. The article will briefly describe the capability developed and methods underpinning continuous on-demand production of analyses and insights aimed to stimulate inquiry and action to improve retention
    corecore